A Short Proof That All Linear Codes Are Weakly Algebraic-geometric Using a Theorem of B. Poonen

نویسنده

  • SRIMATHY SRINIVASAN
چکیده

In this paper we give a simpler proof of a deep theorem proved by Pellikan, Shen and van Wee that all linear codes are weakly algebraic-geometric using a theorem of B.Poonen.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Codes on Varieties as Codes on Curves

The discovery of algebraic geometric codes constructed on curves led to generalising this construction on higher dimensional varieties. In this paper, we use a theorem of B. Poonen to show that the codes obtained from higher dimensional varieties can be realised as codes on curves. One of the important consequences of this result is that the search for good codes on varieties that beat the exis...

متن کامل

Some Results on TVS-cone Normed Spaces and Algebraic Cone Metric Spaces

In this paper we introduce the cone bounded linear mapping and demonstrate a proof to show that the cone norm is continuous. Among other things, we prove the open mapping theorem and the closed graph theorem in TVS-cone normed spaces. We also show that under some restrictions on the cone, two cone norms are equivalent if and only if the topologies induced by them are the same. In the sequel, we...

متن کامل

A SHORT PROOF OF A RESULT OF NAGEL

Let $(R,fm)$ be a Gorenstein local ring and$M,N$ be two finitely generated modules over $R$. Nagel proved that if $M$ and $N$ are inthe same even liaison class, thenone has $H^i_{fm}(M)cong H^i_{fm}(N)$ for all $iIn this paper, we provide a short proof to this result.

متن کامل

On (po-)torsion free and principally weakly (po-)flat $S$-posets

In this paper, we first consider (po-)torsion free and principally weakly (po-)flat $S$-posets, specifically  we discuss when (po-)torsion freeness implies principal weak (po-)flatness. Furthermore, we give a counterexample to show that Theorem 3.22 of Shi is incorrect. Thereby we present a correct version of this theorem. Finally, we characterize pomonoids over which all cyclic $S$-posets are ...

متن کامل

ON FELBIN’S-TYPE FUZZY NORMED LINEAR SPACES AND FUZZY BOUNDED OPERATORS

In this note, we aim to present some properties of the space of all weakly fuzzy bounded linear operators, with the Bag and Samanta’s operator norm on Felbin’s-type fuzzy normed spaces. In particular, the completeness of this space is studied. By some counterexamples, it is shown that the inverse mapping theorem and the Banach-Steinhaus’s theorem, are not valid for this fuzzy setting. Also...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015